JOURNAL OF

CHEMICAL INFORMATION

AND MODELING

pubs.acs.org/jcim

Addressing Challenges of Identifying Geometrically Diverse Sets of

Crystalline Porous Materials

Richard Luis Martin," Berend Smit,*’§ and Maciej Haranczy ol

TComputational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Mail Stop SOF-1650, Berkeley,

California 94720-8139, United States

"Department of Chemistry, University of California, Berkeley, California 94720-1462, United States
SDepartment of Chemical Engineering, University of California, Berkeley, California 94720-1462, United States

e Supporting Information

ABSTRACT: Crystalline porous materials have a variety of uses, such as for catalysis and
separations. Identifying suitable materials for a given application can, in principle, be done
by screening material databases. Such a screening requires automated high-throughput
analysis tools that calculate topological and geometrical parameters describing pores. These
descriptors can be used to compare, select, group, and classify materials. Here, we present a
descriptor that captures shape and geometry characteristics of pores. Together with
proposed similarity measures, it can be used to perform diversity selection on a set of
porous materials. Our representations are histogram encodings of the probe-accessible
fragment of the Voronoi network representing the void space of a material. We discuss and
demonstrate the application of our approach on the International Zeolite Association
(IZA) database of zeolite frameworks and the Deem database of hypothetical zeolites, as
well as zeolitic imidazolate frameworks constructed from IZA zeolite structures. The
diverse structures retrieved by our method are complementary to those expected by

emphasizing diversity in existing one-dimensional descriptors, e.g., surface area, and similar to those obtainable by a (subjective)
manual selection based on materials’ visual representations. Our technique allows for reduction of large sets of structures and thus

enables the material researcher to focus efforts on maximally dissimilar structures.

B INTRODUCTION

Porous materials contain complex networks of void channels
and cages that are exploited in many industrial applications.
The zeolite class of these materials is the most well-known,
as they have found wide use in industry since the late 1950s,
with common applications as chemical catalysts and membranes
for separations and water softeners;' * their value is estimated
at $350 billion per year.” There is increasing interest in utiliz-
ing zeolites as membranes or adsorbents for CO, capture
applications.” In addition to zeolites, metal organic frameworks
(MOFs)®” and their subfamily of zeolitic imidazolate frame-
works (ZIFs)® have recently generated interest for their potential
use in gas separation or storage.” '' A key requirement for the
success of any nanoporous material is that the chemical composi-
tion and pore geometry and topology must be optimal under the
given conditions for a particular application. However, finding
the optimal material is an arduous task, since the number of
possible pore topologies is extremely large. There are approxi-
mately 190 unique zeolite frameworks known to exist today in
more than 1400 zeolite crystals of various chemical compositions
and different geometrical parameters (see ref 12). However,
these experimentally known zeolites constitute only a very small
fraction of more than 2.7 million structures that are feasible on
theoretical grounds.l3'14 Of these, between 314 000 and 585 000
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structures are predicted to be thermodynamically accessible as
aluminosilicates, which gives an even larger number of possible
materials via elemental substitution and different cation ex-
changes.ls’16 Databases of similar or greater magnitude can be
developed for other nanoporous materials such as MOFs or ZIFs.
As a result, new automated computational and cheminformatic
techniques need to be develoyed to characterize, categorize, and
screen such large databases."

Recently, automated approaches capable of performing anal-
ysis of large sets of porous materials have started to emerge. For
example, Blatov and co-workers have pursued the concept of
natural tiling of Feriodic networks to find primitive building
blocks in zeolites.'® The group of Blaisten-Barojas has developed
zeolite framework classifiers using a machine learning approach."”
Duren et al. have grovided a tool to calculate the surface area of a
porous material,”” while Foster et al. and Haldoupis et al. have
presented methods to calculate two parameters frequently used to
describe pore geometry in crystalline porous materials,"”*"
namely, the diameter of the largest included (d;) and the largest
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free (dg) spheres.”” The largest included sphere points to the
location of the largest cavity in a porous material and measures its
size. In contrast, the largest free sphere corresponds to the largest
spherical probe that can diffuse through a structure and measures a
minimum restricting aperture on a diffusion path. Using their
method to calculate d, Haldoupis et al. analyzed a hypothetical
zeolite database containing more than 250 000 structures™ as well
as hundreds of MOFs and directed a few thousand of them for
further characterization using molecular simulation methods.

Although Haldoupis et al. have pushed the current limits in
terms of the number of investigated porous materials, their
method’s reliance on a single simplistic structural descriptor,
d, demonstrates the narrow range of descriptors presently
available in state-of-the-art structural representation. There is a
need therefore to develop additional, novel structural descrip-
tors, as well as further expand upon the range of available tools
and approaches for structure analysis, selection, comparison, and
investigation of the geometrical parameters describing pores.
Recently, the Floudas group has begun to address this issue: they
developed an automatic approach to segment and analyze the
void space of zeolites™* as well as proposed a screening approach
for materials with shape selectivity.”> Our group has also
begun to address this issue’® ** and porous materials-specific
visualization needs.””*® We presented algorithms and software
tools for high-throughput geometry-based analysis of crystalline
porous materials, in particular, efficient algorithms to calculate
d; and d; for a given structure as well as the dimensionality of its
channel systems.”® Moreover, we provided algorithms to deter-
mine the accessibility of sections of the void space to a particular
probe, as well as a Monte Carlo procedure for integration of
accessible surface area (ASA) and accessible volume (AV) that
can use the resulting information. Our tools are based on the
Voronoi decomposition, which for a given arrangement of atoms
in a periodic domain provides a graph representation of the void
space. When performing a Voronoi decomposition, the space
surrounding n points is divided into #n polyhedral cells such that
each of their faces lies on the plane equidistant from the two
points sharing the face. Edges of such cells overlap with lines
equidistant to neighboring points (three points in a general
asymmetric case), whereas vertices of cells, the Voronoi nodes,
are equidistant from neighboring points (four points in a general
asymmetric case). The Voronoi network, built of such nodes and
edges, maps the void space surrounding the points. Analysis of
such a network is fairly straightforward and can provide detailed
information about void space geometry and topology. The
Voronoi decomposition has already been used in the analysis
of crystalline materials®" and their voids®” as well as membranes*>
and has been suggested as a tool to investigate ion transport
pathways in crystals.**

The vast majority of currently available descriptors, such as
dg d, ASA, and AV, are one-dimensional descriptors. As such
they have a limited application in diversity selection of materials
with various shapes and geometries of pores. Such selection is in
demand for at least two reasons. First, large databases containing
millions of hypothetical material structures are becoming avail-
able, and the computational cost of their characterization using
molecular simulation techniques can be prohibitively high.
Efficient sampling ensures that valuable resources are spent on
statistically relevant, nonidentical structures. Second, with state-
of-the-art molecular simulation studies characterizing hundreds
of thousands of materials, the quantity of “top candidates” can
still be too large to allow visualization or more detailed structural

analysis of each material. Instead, the researcher can examine a
much smaller quantity of high-performance materials, and within
this maximally dissimilar set, discover specific features that they
have in common.

In the present contribution, we introduce a new geometry-
based descriptor that aims to capture shape and size character-
istics of the accessible sections of the void space. Our descriptor,
the Voronoi hologram, is a three-dimensional vector holding a
histogram representation of the accessible section of a Voronoi
network encoding of the void space of a material. This repre-
sentation is efficiently combined with a modified Tanimoto
similarity coefficient and dissimilarity-based selection algorithms
to perform diversity selection of porous materials. We present an
application of our approach on the International Zeolite Associa-
tion (IZA) database of zeolite topologies, as well as Deem’s
database of hypothetical zeolites'® and a set of computationally
derived ZIF structures.

B METHODS

Overview. Our approach to diversity selection consists of the
following steps: (1) Perform the Voronoi decomposition for all
structures in the data set to obtain a graph representation of the
void space of materials. (2) Obtain Voronoi hologram represen-
tations of the graphs of 1. (3) Initiate the diversity selection
procedure by selecting the first structure. (4) Iteratively identify
the most diverse structure using a similarity measure, and add the
structure to the sample, continuing until the similarity threshold
is reached.

In the following sections, we discuss the details of components
used to execute steps 1—4.

1. Voronoi Network Representation of the Accessible Void
Space. Our implementation of the Voronoi decomposition in
analysis of the void space of crystalline porous materials has been
described in detail in ref 26.

The Voronoi decomposition for a particular porous material m
yields a periodic Voronoi network, w, which is a function of the
spatial arrangement of atoms. w consists of nodes and edges
mapping the void space surrounding the atoms (Figure 1), where
each node and edge is labeled with its distance to the nearest
atoms. This distance corresponds to the radii of the largest
spherical probe that can, respectively, be placed at the node or
travel along the edge, without colliding with any atom. For a
particular probe radius (for example, 1.625 A for CH, probe), a
graph propagation algorithm—a variation of the Dijkstra short-
est path algorithm> —is then used to identify the probe-accessible
regions of the Voronoi network, v. v is a periodic subgraph
representing the guest-molecule-accessible region of the void
space. Voronoi networks obtained for different materials can be
compared to produce a measure of shape similarity between the
void space networks of materials. It has to be noted that our
implementation of the Voronoi decomposition can handle atoms
of different radii.”® The approach discussed here can therefore be
applied to diverse materials such as MOFs and ZIFs. For the
purpose of this article, we have used the same set of radii as in
previous studies of zeolites>' and MOFs."”

2. Voronoi Hologram Representations. Given a probe-mole-
cule-accessible Voronoi network v, we construct histograms which
encode the frequency of occurrence of edges within v, classified
by three properties: their length, /, and the radii of the two nodes
they connect, r, and r;,, where r, > ;. The interpretation of radius
is simply the distance from the Voronoi node to the surface of the
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Figure 1. Top left: an example material m—the zeolite FAU (atoms in
blue)—and its 3D Voronoi network w (orange). Top right: within w, the
CHy,-accessible Voronoi subnetwork v is highlighted (purple). Bottom
left: only v is shown, to illustrate the pore topology encoded as Voronoi
nodes and edges. Bottom right: a visualization of the pore landscape
corresponding to the CH4-accessible network, with the Si and O atoms
in the structure in tan and red, respectively. Atom and node radii are
not shown.

nearest atom given by the Voronoi decomposition procedure.
Because I, r, and r, are continuous variables, we chose to
construct a binning system for edge lengths and node radii.
The bounds for each bin were determined by profiling a data
set of combined CH,-accessible IZA (148 structures) and Deem
(200, randomly selected structures) databases. In this, we
empbhasize equally populated bins; as such, the bin upper bounds
can be said to be tuned to this random selection of structures. We
found that the use of 16 bins provides an approximate average
length step size of 0.2 A and a radii step size of 0.25 A, and we
selected this quantity. The upper bounds are provided in Table 1.
The first bound for edge lengths is quite small, indicating the
high quantity of very short edges present in these networks; note
also that the smallest node radii which can occur in the accessible
part of a network will be equal to the probe radius—in this case,
CH, with radius of 1.625 A. The result is that each edge in
v belongs to exactly one of the 2176 distinct bins arranged in
a three-dimensional, cubic grid (note that the region of the grid
representing r, < r, is unoccupied by the above definition).
Hence, v is uniquely represented by h(v), where h(v) is a concise
encoding of the multiplicity of edge types which occur in v. The
construction of h(v) is illustrated in Figure 2; two example
holograms, those of the zeolites FAU and TUN, are provided
in Figure 3.

h(v) constitutes an abstraction, or simplification, of v. Each
edge e in v is present in h(v); however, all further information—
about the interconnectivity of edges, their position in space, etc.—
is lost. With this lower-complexity representation, we can more
efficiently compare two structures A and B. We compute their
probe-accessible Voronoi networks v, and v and measure the

Table 1. Edge Length and Node Radii Upper Bounds, in
Angstroms, to Three Decimal Places”

bin edge length node radii
1 0.060 1.725
2 0.139 1.827
3 0.211 1.932
4 0.308 2.029
S 0.407 2.105
6 0.518 2.193
7 0.617 2.310
8 0.733 2.423
9 0.860 2.520
10 1.018 2.650
11 1.196 2.783
12 1437 2.975
13 1.757 3.173
14 2.231 3.400
15 3.081 3.835

“There is no upper bound for the 16th bin, since it includes all
occurrences of lengths/radii above the bound of the 15th bin.

Srraller node r
radii ry (z axis,
For z2y)

b & Quantity
Larger s
node B '
radii r, -
(y axis)

Edge lengih J (x axis)

Figure 2. The creation of a Voronoi hologram, h(v), for the zeolite FAU.
(1) Probe-accessible channels in v are detected (left, for clarity of
presentation, nodes are visualized with equal and small radii). (2) Each
edge has a binned length and two node radii (center). (3) The quantity of
occurrence of bin combination is encoded in a discrete 3D grid (right).

Figure 3. Left: the Voronoi hologram for zeolite FAU. Features are
assigned a color on the basis of their frequency of occurrence, ranging in
this case from 64 (dark blue) to 256 (red). Right: the Voronoi hologram
for zeolite TUN, the densest in the IZA set. The frequency of feature
occurrence in this case ranges from 4 (dark blue) to 104 (red).

similarity between h(vs) and h(vg). The methods for cal-
culating this similarity are discussed in step 4.

3. Diversity Selection. Diversity selection is a technique which
allows for efficient selection of dissimilar structures from a large set.
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The approach identifies least-similar structures out of a set using
a chosen structure representation and the corresponding simi-
larity measure.

With very large data sets, a pairwise comparison of structures
becomes computationally expensive, and so we perform a Max-
Min>® maximum-dissimilarity-based selection, which is consid-
ered to be a highly effective method for the selection of diverse
and representative samples®’ and which does not require a
precalculated pairwise similarity matrix. The MaxMin method
proceeds as follows:

(1) Initialize the method by selecting some starting structure

(seed).

(2) For each remaining structure, determine its similarity to
every structure which has been selected, storing the
maximum observed similarity, s.

(3) Add the structure which exhibits the smallest s to the set of
selected structures.

(4) If the specified end criteria have not been met, go to
step 2.

By this method, it follows that the values of s observed at each
step comprise a nondecreasing series, and so the method can
be terminated once some similarity threshold is reached, or
alternatively once a specified quantity of structures have been
selected. In our implementation, the first structure in the
alphabetically ordered list of structures was arbitrarily selected
as the seed.

4. Similarity Coefficients. There exist many similarity coeffi-
cients for the calculation of similarity between binary (fingerprint)
or nonbinary (hologram) arrays A and B. In this work, only
holograms are generated; however, they can be compared in a
binary manner through the application of a binary similarity
coefficient. A commonly applied binary similarity coefficient®® is
the Tanimoto coefficient, Tany;,:

T : M
anp, = ———

" a4+ b—c
where a and b are the number of active (i.e., set to 1 in binary
arrays, or nonzero in continuous arrays) bits in arrays A and B, and
¢ is the number of active bits in common. It has a range from 0
(maximal dissimilarity) to 1 (identity). The continuous version of
the Tanimoto similarity coefficient, Tan .y, (for nonbinary data),
is given by:

XiAXiB

(2)

Tancont =

.)2_

—
ks
=

XiAXiB

™Mz M=
1z

Il
—_
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—_

where x;4 and x;5 represent the ith elements in arrays A and B. The
similarity to Tany,, (see eq 1) is clear, and as long as A and B do not
contain negative entries, the range remains 0—1 as above.

For the purposes of this discussion, it is also useful to define how
the binary Tanimoto coeflicient can measure similarity on the basis
of the common absence of features, rather than their common
presence as in Tany,,. We denote this by TanAbsenceyy:

n+c—a—>b

TanAbsencepy, = ——— (3)

n—c
where 7 is the length of the arrays. Note that unlike common
presence as seen above, it is not possible to measure common
absence in a continuous manner.

We are interested in the construction of a representative
sample of a data set of structures through diversity-based
selection. However, the Tanimoto coefficient has a known bias
toward the retrieval of simplistic structures in diversity-based
selection procedures.*” This is because for any binary fingerprint
there may exist more than one (specifically, 2" “) distinct, and
maximally dissimilar, fingerprint. This effect can be mitigated by
considering, in addition to the common presence of features,
f, the common absence thereof.> The modified Tanimoto
system with this functionality devised by Fligner et al.*® is
referred to here as the binary modified Tanimoto with weighting,
MT W

1
MTWy, = 3 (Tanpin (2 — p) + TanAbsencepi, (1 + p))

(4)
where p denotes the proportion of nonzero bits in the combined
arrays, given by:
a+b

2n

(5)

We modify this coefficient to produce a binary modified Tanimoto
similarity which is unweighted (MTUy,,,)—in which each fin-
gerprint has exactly one maximally dissimilar counterpart—by
setting a constant p = 0.5, i.e.:

p:

1
MTUyy, = — (Tangy, + TanAbsencep, 6
2

where similarity ranges from 0 (maximal dissimilarity) to 1 (identity),
as above. The continuous version is given by:

1
MTUpt = 3 (Tanen: + TanAbsencep,) (7)

The same modification is made to MTWy, (see eq 4) to obtain
a version which considers common presence in a continuous
manner, i.e. MTW_g,:

MTW ot = = (Taneont(2 — p) + TanAbsencepi,(1 + p))

(8)

Hence, six similarity coefficients are considered in this work.

Because our Voronoi holograms are constructed by binning
measured lengths and radii, a very small difference in these
measurements can mean the difference between one bin and the
next. To mitigate the effect of this bin-based thresholding, we
diffuse (or smooth) the holograms prior to applying similarity
coefficients. For each nonzero entry g in h(v), we consider the
(up to 26) neighboring points r in the cubic hologram repre-
sentation and increase them by a distance-weighted fraction of |g|
(i.e., the magnitude of point q). Note that the unoccupied region
of the grid representing r, < r, remains unoccupied. The distance
d is the Euclidean distance between the neighboring points in
terms of steps; for example, a directly adjacent point has d = 1,
whereas a point offset by one step in two axes has d = /2. The
effect upon |r| is given by

W~

_lql
Il = - 1 (9)

For example, directly adjacent points r are increased in magni-
tude by |q|/2.
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Implementation. The algorithms for generation of the de-
scribed Voronoi holograms as well as tools for their comparison
have been implemented in our Zeo++ software tool.** Zeo++ is a
tool for performing high-throughput geometry-based analysis of
porous materials and their voids. It also offers algorithms for the
calculation of pore diameters, probe-accessible surface area, and
volumes. Zeo++ is based on the Voro++ Voronoi library.*'

B DATASETS

Zeolites are microporous, crystalline materials comprised of
periodically arranged SiO, tetrahedra. Approved zeolite frame-
work types are catalogued in the IZA database; the version of the
IZA database used in this study contains 185 zeolites after
removing incomplete framework structures. From this set, we
have selected 148 zeolites which have a channel system accessible
to a spherical probe of 1.625 A radii corresponding to a CH,
molecule. We also analyze Deem’s database of hypothetical
zeolite frameworks; the Deem database used in this work consists
of 331171 zeolites (PCOD set),"® from which we again select
only CHy-accessible structures, of which there are 139 397.

ZIFs are a related family of materials; they possess the same
pore topology as zeolites, but their “building blocks” are zinc
atoms and imidazole groups, resulting in larger periodic cells.
Their close relationship to zeolites makes them ideal structures
with which to further assess the performance of our diversity-
based selection procedure. We generate ZIF frameworks com-
putationally by substituting atoms in existing zeolite topologies;
this method will be described in detail in a subsequent publica-
tion. Briefly, we substitute the Si—O—Si chain found in zeolites
with the Zn—Im—Zn chain, where Im is the imidazole group,
since the angles these chains form are similar.®> Due to the
different size of O and Im, the unit cells for ZIFs are rescaled
in respect to their zeolite counterparts by a factor of 1.96. We
apply this technique to the IZA zeolite set described above and
again select only the CHy-accessible structures. We find that all
185 IZA ZIFs are CHy-accessible.

B RESULTS

Profiling on IZA Zeolites and ZIFs. We have investigated and
compared the considered similarity measures in application to
Voronoi holograms. We compared the ability of Tanimoto,
MTW, and MTU—in both binary and continuous forms—to
select a diverse and representative sample of structures from the
IZA zeolite database. We profiled the hologram density (number
of active points in the hologram, i.., the number which are
nonzero) across the IZA set and also across 10 samples of the top
1S diverse structures retrieved by each similarity coefficient, with
a different seed structure used in each sample. The aim was to
determine whether the distribution of hologram densities within
IZA could be reflected in a diverse, and hence representative,
sampling.

Figure 4 illustrates that the Tanimoto coefficient exhibits the
documented bias toward simple (i.e., sparse hologram) struc-
tures; however MTW also exhibits a subtle bias. The MTU
coefficient gives a more representative sampling of hologram
complexity, and so we proceed with this coefficient. Comparing
the binary and continuous versions of these coefficients, we find
subtle differences. The continuous versions demonstrate retrieval
of a smaller quantity of sparse holograms, and a larger quantity of
dense holograms. This is intuitive, as points set in both arrays

_Ta'n bin
o Tancvm
— MTW,,.
A MTWCIJIM
——MTUy;,
——MTU,

conl

Percentage occurrence

5 10 15 20 25 30 35 40 45 50 =50

Number of distinct features

Figure 4. Profile of the number of distinct features in the IZA zeolite
data set and in the structures retrieved in the top 15 hits in diversity-
based selection using binary and continuous versions of three similarity
coeflicients. Percentages are averaged across 10 samples with different
seeds (same 10 seeds used for each coefficient).

=

—— 1 | I

Figure S. Left: the Voronoi hologram for ZIF SOD, the sparsest in the
IZA ZIF set. The frequency of feature occurrence ranges in this case
from 2 (dark blue) to 132 (red, obscured). Right: the Voronoi hologram
for ZIF IMF, the densest in the IZA ZIF set. The frequency of feature
occurrence ranges in this case from 2 (dark blue) to 1072 (red).

may have varying multiplicities, in which case the similarity is
reduced compared to a binary similarity; hence, continuous
coeflicients will tend to select more dense structures.

As well as zeolites, we are also interested in characterization of
ZIFs, a class of MOF. As described above, ZIFs are more complex
structures than zeolites, since each oxygen atom in a zeolite
corresponds to an imidazole ring in its ZIF counterpart. ZIF
periodic unit cells are hence larger due to the size of the imidazole
ring being substituted for the zeolite oxygen atoms. While the
densest hologram in IZA zeolites, TUN, has 145 distinct features
present (see), the sparsest hologram in IZA ZIFs, SOD, has 132,
and the densest, IMF, has 1098 (see Figure S). The average
number of distinct features is 27.155 for zeolites and 549.130 for
ZIFs. Therefore, it is interesting to examine how Voronoi
holograms behave when applied to this different class of material.

As for IZA zeolites, we profile the performance of our six
similarity coefficients with respect to IZA ZIFs (see Figure 6).
Although the difference in behavior between these two classes of
material is pronounced, we still find that binary coeflicients have
a stronger propensity to retrieve simple structures. Within either
the binary or continuous coefficients, Tanimoto, MTW, and
MTU perform similarly.
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We observe, therefore, that while diversity-based selection
using MTU,,;, provides a representative spread of hologram
density for IZA zeolites, as the density of structures increases

50

45

40

| —lZA

A8 —Tany,
8 e o s | e e T
g 25 —MTWy,
g 2 = MTW
g LD —MTUy
g = MT U
g 1w &

5 N -‘

0 —

LELS LSS

Number of distinct features

Figure 6. Profile of the number of distinct features in the IZA ZIF data
set and in the structures retrieved in the top 1S hits in diversity-based
selection using binary and continuous versions of three similarity
coefficients. Percentages are averaged across 10 samples with different
seeds (same 10 seeds used for each coefficient).

significantly, all binary coeflicients begin to exhibit Tanimoto’s
known bias toward sparsity. For very dense representations,
therefore, a continuous coefficient is most appropriate.

Diverse IZA Zeolites. Following this validation experiment,
we aimed to select a single representative subset of zeolite
structures in IZA. We arbitrarily selected the alphabetically first
structure, ABW, as the seed. By observation, we determined that
an MTUy,, similarity threshold of 0.5, at which point a total of 20
structures are present in the sample, constitutes an intuitive
position at which to terminate selection. This subset consists of a
range of visually distinct features: narrow and wide channels,
junctions of various sizes and degrees of connectivity, large and
small cages, and pronounced and subtle widening and narrowing
of accessible regions. Figure 7 demonstrates this with pore
network contours; the highlighted regions of the structures are
the pore networks, lighter regions being the inside of pores and
darker regions the outside. For instance, the first structure, ABW,
consists of two very thin channels which each cross the periodic
boundary. Certain structures in the diverse set appear similar—
however, their selection is the result of differences in the holo-
gram features set in each structure, which reflect more subtle
differences in their overall shapes. For instance, EAB and AFT are
somewhat similar (0.48 MT Uy, similarity); however, the differ-
ences in the shapes of their pore network cages and connecting
channels result in their differing hologram densities: they exhibit

MWW

SOF

Figure 7. The pore networks for the first 20 (before 0.5 similarity threshold) IZA structures selected by the diversity-based selection method.
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EDI AFS

Figure 8. The pore networks for the following five (after 0.5 similarity threshold) IZA structures retrieved by the diversity-based selection method.

8000013 8114390
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8299445

8091197

8208290 8210505

Figure 9. The pore networks for the first 15 hypothetical structures selected by the diversity-based selection method.

16 and 31 distinct features respectively; EAB’s smaller cages
(d; = 7.08 A) exhibit less diversity in features present than AFT
(di=7.69 A).

Continuing to select structures beyond this point retrieves
those with greater than 0.5 similarity to a previously selected
structure, and by inspection some similarity between candidates
and previously selected structures begins to emerge (see Figure 8).
For instance, structures MWW and AFY in Figure 7 and AFS in
Figure 8 appear to be similar, each with a 120° inclined paral-
lelepiped unit cell and clear cages centered on the corners; how-
ever, MWW and AFY are retrieved in our selection of the top 20
structures and AFS is not. AFS exhibits a free sphere diameter of
5.95 A, similar to AFY’s 5.84 A (MWW has 4.86 A), while it has
an included sphere diameter of 9.45 A, similar to MWW’s 9.63 A
(AFY has 7.76 A). As seen for EAB and AFT, the difference in the
basic structural properties observed here contributes directly
toward dissimilarity due to the activation of different features in
the structures’ holograms. MWW and AFY are found to be
diverse because of a lack of features in common—this is visible in
the near-constant channel and cage diameter in MWW, which by
contrast varies highly in AFY, as in AFS.

Diverse Hypothetical Zeolites. Following our analysis of the
IZA set, we apply the same approach to select a diverse subset of
hypothetical zeolites. We seed the method with the numerically
first structure, with ID 8000013, and retrieve a total of 174
structures before reaching the 0.5 MT Uy, threshold. We provide
pore network diagrams of the most diverse 15 (i.e., those
retrieved first) in Figure 9. The entire list of structures in this
diverse set is included in the Supporting Information. It is clear
that as observed for the IZA set, our diverse sampling of hypo-
thetical zeolites retrieves structures with a range of visually
distinct features; for instance, there is a mixture of narrow and
wide channels. However, what is quite striking about this
selection, and which we do not find for IZA zeolites, is the high
percentage of one-dimensional channel systems (71.8%, with
18.4% and 9.8% two- and three-dimensional, respectively). We
find however that this is broadly representative of the hypothet-
ical set at large, of which 87.3% are one-dimensional channels
(with 8.2% and 4.5% two- and three-dimensional respectively).
Moreover, the range of dimensionalities retrieved by our method
is not what would be expected with a random selection (which
would tend to select percentages equal to those observed in the
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Figure 10. Pie charts illustrating the range of the five basic structural properties for the CHy-accessible IZA set (outer ring) and the 20 most diverse
zeolites retrieved using the MTUy,, coefficient applied to Voronoi holograms (inner ring).

whole set), nor a selection explicitly based upon dimensionality
(which would prioritize outliers). Rather, our method provides a
diverse and representative sample, maintaining the majority of
one-dimensional channels while slightly increasing the propor-
tion of two- and three-dimensional channels. This characteristic
of our method is discussed further in the following section.

W DISCUSSION

We have demonstrated that Voronoi holograms facilitate the
selection of zeolite structures with geometrically diverse pores.
We focus on IZA zeolites using MT Uy, as described above. Two
questions remain: (1) Are the diverse structures representative?
That is, do they give an overview of the variety present in the data
set? (2) Can the same behavior be achieved through the use of
the existing structural descriptors, namely, free and included
sphere diameter, accessible surface area and volume, or dimen-
sionality? That is, do Voronoi holograms provide a qualitatively
new means of comparing structures?

First, we explore the representative quality of the diverse 20
1ZA zeolites, i.e., those obtained before a 0.5 MT Uy, threshold is
reached. We plot in Figure 10 the observed distributions of basic
structural properties in both IZA and the diverse sample. We find
that the diversity-based selection constitutes a representative
sample of the IZA data set with respect to pore network
dimensionality and to varying degrees also maps the observable
range of the remaining basic structural properties. We note in
particular that for these other four properties, the structures

within IZA exhibiting the largest values are not chosen by our
method. This puts our method into stark contrast with a diversity-
based selection performed upon either an individual basic stru-
ctural descriptor or a group thereof, as described below.

A diversity-based selection, which uses one or more of these
simple descriptors, will invariably prioritize the selection of a set
of extreme outlier structures, which exhibit the most diverse
range of the basic structural properties considered. For instance,
using dj, it is clear that the first few structures selected will have
included sphere diameters from the periphery of observed values,
and subsequent selections will be distributed as evenly as possible
through this property space irrespective of the distribution of
included sphere diameters observed within the data set. If one
desires a set of structures with the most diverse range of a specific
property, then this is acceptable; however, this process reveals
nothing about the distribution of this or any other property
throughout the data set and considers no other aspect of the
structures in question (for instance, one might retrieve a diverse
range of included sphere diameters but a very narrow range of
free sphere diameters). This problem can be mitigated by the
fusion of similarities calculated with respect to a range of
structural descriptors. For instance one might define the similar-
ity between two structures as a fusion of the similarity of their
included sphere and their free sphere diameters; yet, with such a
two-dimensional similarity, it will invariably be the case that
structures from the extreme corners of this two-dimensional
property space are selected, after which an even distribution will
arise, but still the problem remains that this selection does not
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Table 2. Comparison of the Pearson’s Correlation between Each of the Descriptors Described above to Three Decimal Places”

Pearson’s correlation between

similarity measures d; ds ASA AV dimensionality holograms
d; 1.000 0.313 0.271 0.672 0.076 0.332
de 0313 1.000 0.011 0.225 0.009 0.254
ASA 0.271 0.011 1.000 0.618 0.271 0.115
AV 0.672 0.225 0.618 1.000 0.125 0.215
dimensionality 0.076 0.009 0.271 0.125 1.000 0.102
holograms 0.332 0.254 0.115 0.215 0.102 1.000
“ASA, AV, dimensionality, and holograms are with respect to a CH, probe.
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Figure 11. Plots illustrating how structural similarities measured using basic structural descriptors, as well as holograms using MTUy,;, similarity, are

related. All pairwise comparisons for 148 IZA zeolites are plotted.

reveal any information about the distribution of properties, and it
is an “artificial”, deliberate selection biased toward some favored
structural properties. These selections may be diverse with
respect to the chosen properties, but they will not be “represen-
tative” of the data set at large.

Hence, a comparison routine based upon a fusion of simila-
rities from basic structural descriptors will be useful only if the
selection of a diverse range of these properties is the only
concern. We demonstrate that Voronoi holograms provide a
qualitatively different means of selecting structures by investigating
the degree to which correlation exists between the five basic
structural descriptors as well as holograms. For each pair of

structures in the 148-member IZA set, their similarity with
respect to each descriptor is calculated; for the one-dimensional
basic structural descriptors, similarity is defined as the normal-
ized distance between the measured properties, such that the two
most extreme values observed yield a similarity of zero (for
dimensionality, similarity is binary: 1 if the structures have the
same dimensionality, else 0). The result is a matrix of pairwise
similarities for each descriptor, each row (or column) of which
gives the observed similarities between some query structure and
each other structure in the data set. Matrices are compared by
calculating the average Pearson product-moment correlation
coefficient™ between the rows (equivalently, columns) of the
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matrices, and the resulting correlations between matrices are
provided in Table 2, with Figure 11 illustrating some of the most
interesting comparisons. The units of d; and d; used in this
analysis are Angstroms, and the units of ASA and AV are square
meters per gram and cubic centimeters per gram, respectively.
The strongest correlation between two different descriptors is
found in AV (for a CH,4 probe approximated with a sphere of
radii 1.625 A) and d;; this is intuitive, since a large included sphere
tends to indicate a large accessible volume—however, d; does not
reveal the quantity of large cages, the variance in which will
reduce this correlation. The only other high correlation observed
is between AV and ASA; this is also intuitive, since a large ac-
cessible volume will tend to have a large surface area—however,
very thin channels will exhibit a larger surface area than a cage
of the same volume, reducing the correlation. Of the remain-
ing descriptors, dimensionality is the least highly correlated
with any other, although this is unsurprising given the binary
nature of dimensionality comparison. Finally, d; and holograms
are not highly correlated with any other existing basic structural
descriptors, or with each other; their highest correlations by
magnitude are with d;. However, we duly note that a lack of
correlation alone is not indicative of the presence of valuable
structural information absent in other descriptors; for instance,
one might construct a novel descriptor uncorrelated with any
known measure which is based on the three letter names assigned
to each IZA structure.

Nevertheless, we argue that Voronoi holograms are an improve-
ment upon these basic structural descriptors. Voronoi holograms
are higher-dimensional descriptors (with 2176 degrees of free-
dom), in contrast to the one-dimensional descriptors described
above; as such, diversity selection will move toward selecting
structures from the periphery of this higher-dimensional property
space, which necessarily involves the selection of structures which
possess differing features (as defined above, i.e., edges connecting
Voronoi nodes of specific radii). A single structure exhibits many
such features, whereas it will for instance exhibit only a single
included sphere diameter. Each hologram feature describes the
shape or “texture” of some localized part of a pore network,
reflecting the arrangement of local atoms, whereas for instance
the included sphere diameter describes the entire pore network
with a single number. We contend that our holograms, through
their abstraction of the entire Voronoi network and comparative
complexity, constitute a representation of porous structures, which
is more revealing of the overall shape of a pore network.

Finally, another interesting question is whether the geomet-
rically diverse sets of materials selected by the presented method
will also have diverse physical properties. Although this issue will
be investigated in detail in our future studies, other preliminary
results suggest that if the physical property depends on the entire
structure and its void space rather than a specific local feature, the
diverse set will likely present a wide range of this property. For
example, in our recent study, we have used multiscale modeling
to predict the energy required to capture CO, from flue gases of a
power plant (referred to as the parasitic energy) using adsorp-
tion-based separations and a porous material.”> Our results
suggest that our diverse set of materials cover most of the range
of parasitic energies. At the same time, we observed that other
physical properties such as the Henry coefficient for CO, can be
practically determined by a local arrangement of atoms forming a
preferential adsorption site, and therefore diversity selection may
not pick up structures with such sites and exceptionally high
Henry coefhicients.

B CONCLUSIONS

The development of large databases of porous materials has to
trigger the development of cheminformatics tools to analyze,
select, group, and classify those materials. We have demonstrated
an approach that allows efficient diversity selection of structures
based on geometrical and shape characteristics of materials. Our
approach employs Voronoi decomposition as a technique to
convert material structure into a periodic graph representation of
the material’s void space. Then, the guest molecule accessible
fragment of the Voronoi network can be used to obtain a
hologram representation, which in turn can be compared using
a modified Tanimoto coeflicient.

Our investigation suggests that the proposed approach provides
an essentially new way to compare structures on the basis of pore
characteristics, as our similarity does not correlate with similarity
defined on the basis of other recently proposed structural descrip-
tors such as free sphere diameter and largest included sphere, as
well as commonly used descriptors such as accessible volume and
surface area.
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